試 題

[第1節]

科目名稱	通訊原理
系所組別	通訊工程學系-通訊甲組

-作答注意事項-

- ※作答前請先核對「試題」、「試卷」與「准考證」之<u>系所組別、科目名稱</u>是否相符。
- 預備鈴響時即可入場,但至考試開始鈴響前,不得翻閱試題,並不得書寫、
 書記、作答。
- 2. 考試開始鈴響時,即可開始作答;考試結束鈴響畢,應即停止作答。
- 3.入場後於考試開始 40 分鐘內不得離場。
- 4.全部答題均須在試卷(答案卷)作答區內完成。
- 5.試卷作答限用藍色或黑色筆(含鉛筆)書寫。
- 6. 試題須隨試卷繳還。

科目名稱:通訊原理

本科目共2頁第1頁

系所組別:通訊工程學系-通訊甲組

1. (15%) A quadrature-carrier multiplexing is employed to transmit two message signals $m_1(t)$ and $m_2(t)$ over the same carrier frequency f_c . The transmitted signal is given by

$$u(t) = A_{c}m_{1}(t)\cos(2\pi f_{c}t) + A_{c}m_{2}(t)\sin(2\pi f_{c}t)$$
.

Sketch the demodulator and explain how to demodulate the message signals $m_1(t)$ and $m_2(t)$ from u(t).

2. (20%) Let W(t) be a white noise with power spectral density $N_0/2$. Assume that W(t) is passed through an ideal bandpass filter with frequency response H(f) given by

$$H(f) = \begin{cases} 1, & |f \pm f_c| < B \\ 0, & \text{otherwise} \end{cases}$$

Let N(t) be the output random process of the filter.

A. (5 %) Determine $E[|N(t)|^2]$.

B. (5 %) The random process N(t) can be represented by

$$N(t) = N_I(t)\cos(2\pi f_c t) - N_Q(t)\sin(2\pi f_c t).$$

Find the power spectral density of $N_I(t)$ and $N_Q(t)$.

- C. (5 %) Let $Z(t) = \frac{d}{dt} N_I(t)$. Determine the power spectral density of Z(t).
- D. (5 %) Determine $E[|Z(t)|^2]$.
- 3. (20%) The M signal waveforms for a M-ary FSK may be expressed as

$$s_m(t) = \sqrt{\frac{2E_s}{T}}\cos(2\pi f_c t + 2\pi m \Delta f t),$$

for m = 0,1,...,M-1 and $0 \le t \le T$, where f_c is the carrier frequency and Δf is the frequency separation between successive frequencies. Assume that $f_c = n/T$ with n being an integer.

A. (5%) Determine the correlation coefficients

$$\gamma_{mn} = \frac{1}{E_s} \int_0^T s_m(t) s_n(t) dt$$

- B. (5%) Determine the minimum frequency separation between successive frequencies for orthogonality.
- C. (5%) Sketch the correlator-type receiver.
- D. (5%) At the receiver, assume that the received signal is corrupted by AWGN. Derive the ML decision rule for the *M*-ary FSK system.

科目名稱:通訊原理

本科目共2頁第2頁

系所組別:通訊工程學系-通訊甲組

4. (25 %) Consider the M=4 biorthogonal signals shown in Figure 1 for transmitting information over an AWGN channel. The noise is assumed to have zero mean and power spectral density $N_0/2$.

Figure 1

- A. (5%) Determine and sketch the basis functions for this signal set.
- B. (5%) Sketch the impulse responses of the matched-filters that match to the basis functions.
- C. (5%) If the noise variance is zero, sketch the output waveforms of the matched-filters when the transmit signal is $s_1(t)$.
- D. (10 %) Determine the symbol error rate of the system if an ML detector is employed.
- 5. (20%) Let $\{b_n\}$ be uncorrelated binary valued $\{+1,-1\}$ random process with $P\{b_n=+1\}=P\{b_n=-1\}=1/2$. From $\{b_n\}$, we form the random process

$$a_n = b_n - b_{n-1}.$$

The transmit signal is given by

$$v(t) = \sum_{n=-\infty}^{\infty} a_n g(t - nT) ,$$

where g(t) is the impulse response of the transmitting filter (a.k.a. pulse shaping function) given by

$$g(t) = \begin{cases} 1, & 0 \le t < T, \\ 0, & \text{otherwise.} \end{cases}$$

- A. (5%) Determine the autocorrelation function of $\{a_n\}$.
- B. (15 %) Determine the power-spectral density of v(t).

試 題

[第2節]

科目名稱	機率
系所組別	通訊工程學系-通訊甲組

-作答注意事項-

- ※作答前請先核對「試題」、「試卷」與「准考證」之<u>系所組別、科目名稱</u>是否相符。
- 預備鈴響時即可入場,但至考試開始鈴響前,不得翻閱試題,並不得書寫、
 畫記、作答。
- 2. 考試開始鈴響時,即可開始作答;考試結束鈴響畢,應即停止作答。
- 3.入場後於考試開始 40 分鐘內不得離場。
- 4.全部答題均須在試卷(答案卷)作答區內完成。
- 5.試卷作答限用藍色或黑色筆(含鉛筆)書寫。
- 6. 試題須隨試卷繳還。

科目名稱:機率

本科目共 1 頁 第 1 頁

系所組別:通訊工程學系-通訊甲組

- 1) (10%) A number x is selected at random in the interval [-1, 2]. Numbers from the subinterval [-1, 0) occur half as frequently as those from [0, 2].
 - a) (5%) Find the probability that x is less than zero.
 - b) (5%) Find the probability that x is less than zero, given that the absolute value of x is less than 1.
- 2) (20%) Let N be a geometric random variable taking on values in $\{1, 2, \ldots\}$.
 - a) (5%) Find P[N = k].
 - b) (5%) Find P[N > k].
 - c) (5%) Find the mean of N.
 - d) (5%) Find the probability that N is even.
- 3) (10%) Let X be a discrete random variable with the following probability mass function:

$$p_X(k) = e^{-\pi} \frac{\pi^k}{k!}$$
 for all $k = 0, 1, 2, \dots$

- a) (5%) Find the mean of X.
- b) (5%) Find the variance of X.
- 4) (15%) A random variable X has a continuous cumulative distribution function (cdf) $F_X(x)$:

$$F_X(x) = \begin{cases} 0, & \text{for } x < 0, \\ 1 - \frac{1}{2}e^{-2x}, & \text{for } x \ge 0. \end{cases}$$

- a) (5%) Identify the type of random variable.
- b) (5%) Find $P[X \le 0]$.
- c) (5%) Find $F_X(x \mid C)$ where $C = \{X > 0\}$.
- 5) (10%) U is selected uniformly at random from the unit interval [0,1]; X is then selected uniformly at random from the interval (0,U).
 - a) (5%) Find $P[X \le x \mid U = u]$.
 - b) (5%) Find the cdf of X.
- 6) (10%) Let $X = U^n$ where n is a positive integer and U is a uniform random variable in the unit interval [0,1].
 - a) (5%) Find the cdf of X.
 - b) (5%) Find the probability density function (pdf) of X.
- 7) (25%) Let X and Y be jointly Gaussian random variables with the following pdf:

$$f_{X,Y}(x,y) = \frac{\exp\left\{-2x^2 - 9y^2/2 - 9y - 9/2\right\}}{2\pi c}$$
 for all x, y .

- a) (5%) Find the constant c.
- b) (5%) Find the mean of Y.
- c) (5%) Find the variance of X.
- d) (5%) Find the covariance of X and Y.
- e) (5%) Find the marginal pdf for X.

試 題

[第2節]

科目名稱	線性代數
系所組別	通訊工程學系-通訊甲組

-作答注意事項-

- ※作答前請先核對「試題」、「試卷」與「准考證」之<u>系所組別、科目名稱</u>是否相符。
- 預備鈴響時即可入場,但至考試開始鈴響前,不得翻閱試題,並不得書寫、 畫記、作答。
- 2. 考試開始鈴響時,即可開始作答;考試結束鈴響畢,應即停止作答。
- 3.入場後於考試開始 40 分鐘內不得離場。
- 4.全部答題均須在試卷(答案卷)作答區內完成。
- 5.試卷作答限用藍色或黑色筆(含鉛筆)書寫。
- 6. 試題須隨試卷繳還。

科目名稱:線性代數

本科目共 1 頁 第 1 頁

系所組別:通訊工程學系-通訊甲組

1. Let
$$A = \begin{bmatrix} 1 & 1 & 1 & -1 \\ 0 & 2 & 0 & 0 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & 0 & 4 \end{bmatrix}$$
. Find the results with details.

- a. (5 pts.) The determinant.
- b. (10 pts.) The inverse matrix.
- c. (10 pts.) The eigenvalues and their corresponding eigenvectors.
- d. (10 pts.) Find a matrix P that diagonalizes A.
- e. (5 pts.) Find A^7 .
- f. (20 pts.) Find QR-decomposition of A.
- g. (10 pts.) Are the row vectors of A linearly dependent? Explain your answers.
- h. (5 pts.) Find the orthogonal complement of the null space of A.
- 2. (25 pts.) Prove that a singular matrix with size $n \times n$ cannot be reduced as I_n by Gauss-Jordan elimination. (Hint: You can use the skill of contradiction to prove this rule)

If you have no idea about this proof, please show a 3x3 matrix without zero row and column as an example to explain this rule. (Just get some points)

