試 題

[第1節]

科目名稱	通訊原理
系所組別	通訊工程學系-通訊甲組

-作答注意事項-

- ※作答前請先核對「試題」、「試卷」與「准考證」之<u>系所組別、科目名稱</u>是否相符。
- 1. 預備鈴響時即可入場,但至考試開始鈴響前,不得翻閱試題,並不得書寫、 畫記、作答。
- 2. 考試開始鈴響時,即可開始作答;考試結束鈴響畢,應即停止作答。
- 3.入場後於考試開始 40 分鐘內不得離場。
- 4.全部答題均須在試卷(答案卷)作答區內完成。
- 5.試卷作答限用藍色或黑色筆(含鉛筆)書寫。
- 6. 試題須隨試卷繳還。

科目名稱:通訊原理

本科目共2頁第1頁

系所組別:通訊工程學系-通訊甲組

1. (20 %) A single sideband (SSB) signal can be expressed as

$$s(t) = m(t)\cos(2\pi f_c t) + \hat{m}(t)\sin(2\pi f_c t)$$

where m(t) is the message signal, $\hat{m}(t)$ is the Hilbert transform of m(t), and f_c is the carrier frequency. Let M(f) be the Fourier transform of m(t).

- (a) (10%) Determine the Fourier transform of s(t).
- (b) (10%) Sketch a block diagram of the demodulator. Show that the message signal can be recovered using the demodulator.
- 2. (20 %) A DSB-SC signal is represented by

$$s(t) = Am(t)\cos(2\pi f_c t)$$

where m(t) is the message signal and f_c is the carrier frequency. Let M(f) and $S_m(f)$ be respectively the Fourier transform of m(t) and the power spectral density of m(t).

- (a) (5 %) Determine the Fourier transform of s(t).
- (b) (5 %) Determine the power spectral density of s(t).
- (c) (10 %) How to demodulate the DSB-SC signal? Sketch the block diagram of the demodulator.
- 3. (20 %) The received signal in a binary communication system that employs antipodal signals is r(t) = As(t) + n(t)

where s(t) is shown in Figure 1 and n(t) is AWGN with power spectral density of $N_0/2$. The value of A is given by

$$A = \begin{cases} \sqrt{E_s} & \text{if 1 is transmitted} \\ -\sqrt{E_s} & \text{if 0 is transmitted} \end{cases}$$

- (a) (5%) Sketch the impulse response of the filter matched to s(t).
- (b) (5%) Sketch the output of the matched filter to the input s(t).
- (c) (5 %) Determine the variance of the noise output of the matched filter at t=1.
- (d) (5 %) Assume that $A = \sqrt{E_s}$ and $A = -\sqrt{E_s}$ occur with equal probability. Determine the probability of error as a function of E_s and N_0 .

Figure 1

科目名稱:通訊原理

本科目共2頁第2頁

系所組別:通訊工程學系-通訊甲組

- 4. (20 %) Three modulation schemes, the binary phase-shift keying (BPSK), the binary frequency-shift keying (BFSK), and the on-off keying (OOK) are considered as candidates for a digital communication system. Let E_s be the average transmit energy per symbol.
 - (a) (15 %) Determine the bit error rates for BPSK, BFSK, and OOK over the AWGN channel with power spectral density of $N_{\rm 0}$ /2.
 - (b) (5 %) Which one should be selected to achieve the lowest bit error rate? Explain why?
- 5. (20 %) A binary communication system uses two signals $s_1(t)$ and $s_2(t)$, for $0 \le t < T$, to represent equal probable information bit "0" and "1", respectively. The energies for both signals are equal with

 $E = \int_0^T \left| s_1(t) \right| dt = \int_0^T \left| s_2(t) \right| dt$. Let the received signal be $r(t) = s_i(t) + n(t)$, where n(t) is a zero-mean white Gaussian noise with power spectral density of $N_0 / 2$.

- (a) (10 %) Design an optimal receiver for the system.
- (b) (5 %) Determine the bit error rate for the optimal receiver.
- (c) (5 %) Given $\,E\,$ and $\,N_{\scriptscriptstyle 0}$, under what conditions, the receiver has the best performance.

試 題

[第2節]

科目名稱	線性代數
系所組別	通訊工程學系-通訊甲組

-作答注意事項-

- ※作答前請先核對「試題」、「試卷」與「准考證」之<u>系所組別、科目名稱</u>是否相符。
- 1. 預備鈴響時即可入場,但至考試開始鈴響前,不得翻閱試題,並不得書寫、 畫記、作答。
- 2. 考試開始鈴響時,即可開始作答;考試結束鈴響畢,應即停止作答。
- 3.入場後於考試開始 40 分鐘內不得離場。
- 4.全部答題均須在試卷(答案卷)作答區內完成。
- 5.試卷作答限用藍色或黑色筆(含鉛筆)書寫。
- 6. 試題須隨試卷繳還。

科目名稱:線性代數

本科目共 1 頁 第 1 頁

系所組別:通訊工程學系-通訊甲組

Let
$$A = [A^{(1)} A^{(2)} A^{(3)}] = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 1 & 0 & 2 \end{bmatrix}$$
, where $A^{(1)}$, $A^{(2)}$ and $A^{(3)}$ are ordered column vectors of A ,

$$\mathbf{B} = [\mathbf{B}^{(1)} \ \mathbf{B}^{(2)} \ \mathbf{B}^{(3)}] = \begin{bmatrix} 2 & 0 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \text{ where } \mathbf{B}^{(1)}, \mathbf{B}^{(2)} \text{ and } \mathbf{B}^{(3)} \text{ are ordered column vectors of } \mathbf{B}, \text{ and } \mathbf{B}^{(3)}$$

$$\mathbf{I}_3 = [\mathbf{e}_1 \ \mathbf{e}_2 \ \mathbf{e}_3] = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \text{ where } \mathbf{e}_1, \ \mathbf{e}_2 \text{ and } \mathbf{e}_3 \text{ are ordered column vectors of } \mathbf{I}_3.$$

- 1. Show your answers with details
 - a. (5 pts.) The sum of all eigenvalues in A.
 - b. (5 pts.) The geometry multiplicities of A.
 - c. (5 pts.) The product of all eigenvalues in **B**.
 - d. (5 pts.) The inverse matrix of **B** with the augmented matrix $[I_3|B]$ and Gauss-Jordan elimination.
 - e. (15 pts.) The solution of $\mathbf{A}[x_1 \ x_2 \ x_3]^T = [1 \ 2 \ 3]^T$ with Cramer's rule.
- 2. In \mathbb{R}^3 , find the results with details.
 - a. (5 pts.) The transition matrix from the standard basis $\underline{e} = \{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ to the basis $\underline{A} = \{\mathbf{A}^{(1)}, \mathbf{A}^{(2)}, \mathbf{A}^{(3)}\}$.
 - b. (5 pts.) The coordinate vector with the basis $\underline{A} = \{A^{(1)}, A^{(2)}, A^{(3)}\}\$ corresponding to $(1\ 2\ 3)_{\underline{e}}$ with the standard basis $\underline{e} = \{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$.
 - c. (10 pts.) The coordinate vector with the basis $\underline{A} = \{A^{(1)}, A^{(2)}, A^{(3)}\}\$ corresponding to $(1\ 2\ 3)\underline{B}$ with the basis $\underline{B} = \{B^{(1)}, B^{(2)}, B^{(3)}\}\$.
 - d. (10 pts.) The transition matrix from the standard basis $\underline{B} = \{\mathbf{B}^{(1)}, \mathbf{B}^{(2)}, \mathbf{B}^{(3)}\}\$ to $\underline{A} = \{\mathbf{A}^{(1)}, \mathbf{A}^{(2)}, \mathbf{A}^{(3)}\}\$.
- 3. The inner product is $\langle \mathbf{U}, \mathbf{V} \rangle = \text{tr}(\mathbf{U}^T \mathbf{V})$ where \mathbf{U} and \mathbf{V} are in the real vector space $\mathbf{M}_{3\times3}$, and $\text{tr}(\mathbf{X})$ is the trace of the matrix \mathbf{X} .
 - a. (5 pts.) Find the inner product of the identity matrix (I_3) and A.
 - b. (10 pts.) Prove or disprove that the additivity axiom holds with this inner product.
 - c. (10 pts.) Find the norm-2 length of **B**.
 - d. (10 pts.) Show the cosine of the angle between the matrices A and B with details.

試 題

[第2節]

系所組別 通訊工程學系-通訊甲組	

-作答注意事項-

- ※作答前請先核對「試題」、「試卷」與「准考證」之<u>系所組別、科目名稱</u>是否相符。
- 1. 預備鈴響時即可入場,但至考試開始鈴響前,不得翻閱試題,並不得書寫、畫記、作答。
- 2. 考試開始鈴響時,即可開始作答;考試結束鈴響畢,應即停止作答。
- 3.入場後於考試開始 40 分鐘內不得離場。
- 4.全部答題均須在試卷(答案卷)作答區內完成。
- 5.試卷作答限用藍色或黑色筆(含鉛筆)書寫。
- 6. 試題須隨試卷繳還。

科目名稱:機率

本科目共1頁 第1頁

系所組別:通訊工程學系-通訊甲組

- 1) (10 points) Alice has three children. Assume that all eight possible arrangements of boy "b" and girl "g" in the order of birth, {ggg, bgg, gbg, ggb, bbg, bgb, gbb, bbb}, are equally probable.
 - a) (5 points) What is the probability that Alice has two girls and one boy?
 - b) (5 points) Given the information that at least one of Alice's children is a boy and the younger child is not a girl, what is the probability that Alice has two girls and one boy?
- 2) (15 points) Let X be the number of heads in 10 tosses of a fair coin.
 - a) (5 points) Find the probability mass function of X.
 - b) (5 points) Find the mean of X.
 - c) (5 points) Find the variance of X.
- 3) (20 points) A random variable X has the following probability density function (pdf):

$$f_X(x) = \left\{ egin{array}{ll} c(1-x^4), & {
m for} & -1 \leq x \leq 1, \\ 0, & {
m elsewhere,} \end{array}
ight.$$

where c is a constant.

- a) (5 points) Find c.
- b) (5 points) Find the probability that X > 0.
- c) (5 points) Find the cumulative distribution function (cdf) $F_X(x)$ of X.
- d) (5 points) Find the mean of X.
- 4) (15 points) Consider the following joint pdf of two random variables X and Y:

$$f_{X,Y}(x,y) = \begin{cases} x+y, & \text{if } 0 \le x \le 1, 0 \le y \le 1 \\ 0, & \text{otherwise.} \end{cases}$$

- a) (5 points) Find the marginal pdf of X.
- b) (5 points) Find the probability that " $Y \ge X + 0.5$ ".
- c) (5 points) Are X and Y dependent or independent? Please explain your answer. (0 point if the explanation is incorrect.)
- 5) (20 points) Let X be a normal (Gaussian) random variable with mean 40 and variance 16. Consider Y = aX + b, where a and b are two constants to be designed such that Y has zero mean and unit variance.
 - a) (10 points) Find a and b.
 - b) (5 points) Find the pdf of Y.
 - c) (5 points) Find the characteristic function of Y.
- 6) (20 points) Let X be a continuous random variable with cdf $F_X(x)$ and pdf $f_X(x)$. Consider $Y = X^2$.
 - a) (5 points) The event $\{Y \leq y\}$ is equivalent to what event involving X itself?
 - b) (5 points) Use part a) to find the cdf of Y.
 - c) (5 points) Use part b) to find the pdf of Y.
 - d) (5 points) If X denotes the amplitude of a radio signal with the following pdf:

$$f_X(x) = \frac{x}{\alpha^2} e^{-x^2/2\alpha^2}, \ x > 0, \ \alpha > 0,$$

where α is a constant, use part c) to find the pdf of the squared envelope Y.